

KIDS – Kernel Intrusion Detection
System

Hack In The Box 2007 – DUBAI - UAE

Rodrigo Rubira Branco
<rodrigo@kernelhacking.com>

Domingo Montanaro
<conferences@montanaro.org>

Dubai, 05/04/2007

Disclaimer

We are just security guys who work for big companies.

This presentation is just about issues we have worked on
 in our own time, and is NOT related to the companies
ideas, opinions or works.

Montanaro main research efforts are in Forensics and
Anti-Forensics technics and backdoor detection/reversing

Rodrigo research efforts are in going inside the
System Internals and trying to create new problems to
be solved

Agenda

• Motivation – Actual Issues to be solved

• Tools that try to act on this issues and their vulnerabilities

• Differences between protection levels (software / hardware)

• The Forensics and Anti-Forensics challenge

• Our Proposal

• Comments on efforts of breaking our ideas

• Improvements on StMichael – Technical Stuff

• Questions and Astalavista baby :D

Motivation

• Linux is not secure by default (we know, many
secure linux distributions exist...)

• Most of efferts till now on OS protection don’t
really protect the kernel itself

• Many (a lot!) of public exploits were released for
direct kernel exploitation

• Beyond of the fact above, it is possible to
bypass the system’s protectors (such as
SELinux)

• After a kernel compromise, life is not the same
(never ever!)

Breaking into SELinux

Spender's (from grsecurity.net) released a public exploit
with SELinux and LSM disable code...

“Bug in fs/splice.c was silently fixed in 2.6.17.7, even
though the SuSE developer who fixed the bug knew it to
be a "local DoS" Changelog stated only: "splice: fix
problems with sys_tee()"

On LKML, the user reporting tee() problems said the oops
was at ibuf->ops->get(ipipe, ibuf), where ibuf->ops was
NULL

Exploitation is TRIVIAL, mmap buffer at address 0, 7th
dword is used as a function pointer by the kernel
(the get())”

Breaking into SELinux

pipebuf[6] = &own_the_kernel;

/* don't need PROT_EXEC since the kernel is executing
it, bypasses SELinux's execmem restriction enabled by
default in FC6 test1 */

ptr = mmap(NULL, PAGE_SIZE, PROT_READ |
PROT_WRITE, MAP_FIXED |
MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);

memcpy(ptr, &pipebuf, sizeof(pipebuf));

We got own_the_kernel to be executed in kernel-mode

Breaking into SELinux

own_the_kernel

- get_current

- disable_selinux

- change gids/uids of the current

- chmod /bin/bash to be suid

Breaking into SELinux

disable_selinux

- find_selinux_ctxid_to_string()

/* find string, then find the reference to it, then work
backwards to find a call to selinux_ctxid_to_string */

What string? "audit_rate_limit=%d old=%d by auid=%u
subj=%s"

- /* look for cmp [addr], 0x0 */
then set selinux_enable to zero

- find_unregister_security();

What string? "<6>%s: trying to unregister a"
Than set the security_ops to dummy_sec_ops ;)

LSM Discussion

- Ok, because SeLinux uses the LSM framework, we will explain how
the LSM framework works for the purpose of this presentation:

* security_operations structure contains pointers to functions
that will be called by the internal hooks

* dummy implementation that does nothing and will call the
loaded module hooks (stackable) -> First problem... the stackable
module support depends entirely on the modules, it will inherit a lot
of complexity into the code (kernel bugs)

* all symbols are exported, so, anyone can use it in a backdoor
(see references)

LSM Discussion – Dumb module

int myinode_rename(struct inode *old_dir, struct dentry *old_dentry,
 struct inode *new_dir, struct dentry *new_dentry) {

printk("\n dumb rename \n");

return 0;
}

static struct security_operations my_security_ops = {
.inode_rename = myinode_rename,

};

register_security (&my_security_ops);

Kernel Backdoor Fragment

static int
execute(const char *string)
{

...

if ((ret = call_usermodehelper(argv[0], argv, envp, 1)) != 0) {
printk(KERN_ERR "Failed to run \"%s\": %i\n",
 string, ret);

}
return ret;

}

OBS: call_usermodehelper replaces the exec_usermodehelper showed
in the phrack article (see references)

Kernel Backdoor Fragment

 /* create a socket */
 if ((err = sock_create(AF_INET, SOCK_DGRAM, IPPROTO_UDP, &kthread->sock))

< 0)
 printk(KERN_INFO MODULE_NAME": Could not create a datagram socket,

error = %d\n", -ENXIO);
 goto out;
 }
 if ((err = kthread->sock->ops->bind(kthread->sock, (struct sockaddr *)&kthread->

addr, sizeof(struct sockaddr))) < 0)
 printk(KERN_INFO MODULE_NAME": Could not bind or connect to socket,

error = %d\n", -err);
 goto close_and_out;
 }
 /* main loop */
 for (;;)
 {
 memset(&buf, 0, bufsize+1);
 size = ksocket_receive(kthread->sock, &kthread->addr, buf, bufsize);

OBS: See the references for a complete UDP Client/Server
 in kernel mode

Kernel Backdoor Fragment

static struct workqueue_struct *my_workqueue;

static struct work_struct Task;
static DECLARE_WORK(Task, intrpt_routine, NULL);

static void intrpt_routine(void *irrelevant)
{

/* do the scheduled action here */

if (!die)
queue_delayed_work(my_workqueue, &Task, HZ);

}

my_workqueue = create_workqueue(MY_WORK_QUEUE_NAME);
queue_delayed_work(my_workqueue, &Task, 100);

OBS: StMichael uses this kind of schedule, it has been taken from
the LKMPG Chapter 11 (see references)

Kernel Backdoor Fragment

- Presented by Richard Johnson at Toorcon 2004

int
_load_binary (struct linux_binprm *linux_binprm, struct pt_regs *regs)
{

 ...
}

The parameter regs isn't used...

Kernel Backdoor Fragment

int my_bprm_set_security (struct linux_binprm *bprm)
{

if (! md5verify_sum(bprm->filename))
{

printk("\n hey hey hey\n");
return -1;

}

return 0;
}

Kernel Backdoor Fragment

- Putting all things together, so you have:

* UDP Client/Server -> You can use it to receive and respond to backdoor
commands

* LSM registered functions (or hooks) -> Can intercept commands, hide
things, and do interesting things (will be revised later)

* Execution from the kernel mode -> Can execute commands requested by the
user

* Schedule tasks -> Permits scheduling the backdoor to run again (maybe to
begin a new connection - connback), after a period of time

Yeah, only using public available sources!!

PaX Details

•“The Guaranteed End of Arbitrary Code
Execution”

•Address Space Layout Randomization (ASLR)

•Provides non-executable memory pages
Seems good, but

• Various methods of by-passing some PAX resources were
successfull demonstrated (H2HC 2005)

• Any kind of bug that leads to arbitrary kernel write/execute
could be used to re-mark the page-protection mechanism
(PaX KernSeal will try to prevent it)

• PAX needs complementary solutions (grsecurity)

• Most ppl think that PAX+SELinux is a perfect world, but it
isn’t since SELinux doesn’t provide lsm modules that
implements some protection that PAX needs

PaX Details

- KERNEXEC
* Introduces non-exec data into the kernel level
* Read-only kernel internal structures

- RANDKSTACK
* Introduce randomness into the kernel stack address of a task
* Not really useful when many tasks are involved nor when a task is
ptraced (some tools use ptraced childs)

- UDEREF
* Protects agains usermode null pointer dereferences, mapping guard
pages and putting different user DS

The PaX KERNEXEC improves the kernel security because it turns
many parts of the kernel read-only. To get around of this an attacker
need a bug that gives arbitrary write ability (to modify page entries
directly).

PaX Details

Linux Kernel have some read-only portions since 2.2 with PaX kernexec, they are just putting more things in this
protected section: .text, kernel page tables, IDT/GDT

You can do something like: 'readelf -e vmlinux'

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [12] .text PROGBITS 00000000 301000 33f223 00 AX 0 0 4096
 [13] __ex_table PROGBITS c073f230 640230 000c00 00 A 0 0 8
 [14] .rodata.page_alig PROGBITS c0740000 641000 005820 00 A 0 0 16
 [15] .rodata PROGBITS c0746000 647000 0ae53e 00 A 0 0 32
 [16] .eh_frame PROGBITS c07f4540 6f5540 0c67a0 00 A 0 0 4
 [17] .pci_fixup PROGBITS c08bace0 7bbce0 000408 00 A 0 0 4
 [18] __ksymtab PROGBITS c08bb0e8 7bc0e8 005a38 00 A 0 0 4
 [19] __ksymtab_gpl PROGBITS c08c0b20 7c1b20 001470 00 A 0 0 4
 [20] __ksymtab_gpl_fut PROGBITS c08c1f90 7c2f90 000030 00 A 0 0 4
 [21] __ksymtab_strings PROGBITS c08c1fc0 7c2fc0 00fb9d 00 A 0 0 32
 [22] __param PROGBITS c08d2000 7d3000 001018 00 A 0 0 4
 [23] .module.text PROGBITS c08d4000 7d5000 52c000 00 WA 0 0 1
 [24] .data PROGBITS c0e00000 d01000 10c61c 00 WA 0 0 32

The Virtual Address of .text is __KERNEL_TEXT_OFFSET, 0xc0400000, and all sections until .data are mapped
read-only, something like 10 MB of memory in this case... to test you can just do:

 dd if=/dev/zero of=/dev/mem bs=4096 seek=1024

This will (try to) write to physical address 4096*1024=4MB, that is, the beginning of .text and will end up in a
harmless oops because of the read-only mapping. Don't try it w/o KERNEXEC enabled though as
it'll trash your system!

Actual Problems

• Security normally runs on ring0, but usually on
kernel bugs attacker has ring0 privilleges

• Almost impossible to prevent (Joanna said we need
a new hardware-help, really?)

• Lots of kernel-based detection bypassing (more in
the next slides)

• Detection on kernel-based backdoors or attacks
rely on “mistakes” made by attackers

Trying to find the backdoor

Different types of tools residing in the User-Space can
easily be tricked

Linux
king:/mnt/sda1# chkrootkit
bla bla bla nothing found… -- Really? Reliable method?

chkrootkit

Kernel

User-Space

Kernel-Space

OpenFile()

Sw Int - Int80h

All methods covered by these tools can fail when someone is
watching the int80h

• Adore
• Suckit
• Other Custom LKMs

Trying to find the backdoor

Ok, lets assume that our detection method is based on Kernel-
Space tools

Linux
king:/mnt/sda1# gcc -c scprint.c -I/usr/src/linux/include/
king:/mnt/sda1# insmod sprint.o
-- outputs of syscalls addrs to syslog

Reliable method?

insmod / gcc

Kernel

User-Space

Kernel-Space

int0x80

Can gcc, insmod, libs of include, etc, be tricked?

Of course YES

sys_read – 3
sys_open - 5
sys_getdents - 141
sys_query_module - 167
sys_execve - 11
sys_chdir - 12

Trying to find the backdoor

So if we want to inspect a file, its time
to get the blocks directly from the

HDD

Linux
Implementation on the VFS
or on fs_driver
Windows
He4Hook

Reliable method?

 IRP (I/O Request Packet)
Hooking

I/O Manager

Application

File System Driver
(ntfs.sys, …)

Disk Driver (disk.sys)

Volume manager disk driver
(ftdisk.sys, dmio.sys)

Disk Array

Readfile()
(Win32 API)

NtReadfile()
(Kernel32.dll)

Kernel Mode

User Mode

Int 2E
(Ntdll.dll)

Call NtReadFile()
(Ntoskrnl.exe)

KiSystemService
(Ntoskrnl.exe)

Initiate I/O Operation
(driver.sys)

1 32

Disk port driver (atapi.sys, scsiport.sys)

Disk miniport driver

From: Rootkits – Advanced Malware

Darren Bilby

RAM Forensics

An alternative of inspecting directly the system for its process is
to make a physical memory dump and post analysis to find the

malwareLinux
king:/mnt/sda1# ./dcfldd if=/dev/mem of=memory.img bs=512
conv=noerror

To further analysis, tools like Fatkit are used (Static memory dump file
analysis)

Reliable method?

dcfldd

Kernel

User-Space

Kernel-Space

int0x80 execve - /bin/dcfldd
open - /etc/ld.so.cache
read - /bin/dcfldd (ELF)
mmap2,fstat and others

Is it requesting the addrs
of my backdoor

task_struct?
Yes? So send httpd

task_struct

RAM Forensics

ssize_t h_read(int fd, void *buf, size_t count){

unsigned int i;

ssize_t ret;

char *tmp;

pid_t pid;

If the fd (file descriptor) contains something

that we are looking for (kmem or mem)

return_address();

At this point we could check the offset being

required. If is our backdoor addr, send

another task_struct

ret=o_read(fd,buf,count);

change_address();

return ret;

}

int change_address()
{
put our hacks into
the kernel
}

int return_address()
{
return our hacks to the
original state
}

Securely(?) Grabbing the RAM contents

Some hardwares attempt to get the RAM contents

These type of solutions rely on the DMA method of accessing the RAM and
then acting on it (CoPolit) or dumping it (Tribble)

• Tribble – Takes a snapshot (dump) of the RAM

http://www.digital-evidence.org

• CoPilot – Audits the system integrity by looking at the RAM Contents

www.komoku.com/pubs/USENIX-copilot.pdf

• Other Firewire (IEEE 1394) Methods Reliable method?

Joanna Rutkowska showed on BlackHat DC 2007 a technic using MMIO
that could lead the attacker to block and trick a DMA access from a

PCI card.

• NTFS uses logical cluster of 4kb

• Files less than 4kb use 4kb (outside MFT)

• Tools can build a own MFT and address
directly on the disk its own blocks to use as
a container for the backdoor (and can mark
it as bad block to the filesystem, so it would
not be overwritten)

• Combining this to crypto/steganographic
technics should make the forensics job
much harder (and most of times when it’s
well done, efforts will be lost)

Non-addressable space in the MFT than can be written by specfic tools (RAW)

Slack Space

Slack Space

Slack Space

Introducing StMichael

• Generates and checks MD5 and, optionally, SHA1 checksum of several kernel
data structures, such as the system call table, and filesystem call out
structures;

• Checksums (MD5 only) the base kernel, and detect modifications to the
kernel text such as would occur during a silvo-type attack;

• Backups a copy of the kernel, storing it in on an encrypted form, for resto-
ring later if a catastrophic kernel compromise is detected;

• Detects the presence of simplistic kernel rootkits upon loading;

• Modifies the Linux kernel to protect immutable files from having their
immutable attribute removed;

• Disables write-access to kernel memory through the /dev/{k}mem device;

• Conceals StMichael module and its symbols;

• Monitors kernel modules being loaded and unloaded to detect attempts to
conceal the module and its symbols and attempt to "reveal" the hidden
module.

Introducing StMichael
continuing..

• Ioctl() hooking

• Call flags test (and sets it again) -> and returns the
original call

• Self protection : Removes itself from the module list

• Uses encrypted messages to avoid signature detection of
its code

• Random keys

• MBR Protection

• Modules syscalls hooked (create_module,init_module,etc)

Efforts on bypassing
StMichael

• Julio Auto at H2HC III proposed an IDT hooking
to bypass StMichael

• Also, he has proposed a way to protect it
hooking the init_module and checking the
opcodes of the new-inserted module

• It has two main problems:
– Can be easily defeated using polymorphic

shellcodes

– Just protect against module insertion not against
arbitrary write (main purpose of stmichael)

Efforts on bypassing
StMichael

• The best approach (and easy?) way to bypass
StMichael is:

– Read the list of VMA's in the system, detecting the
ones with execution property enabled in the
dynamic memory section

– Doing so you can spot where is the StMichael code
in the kernel memory, so, just need to attack it...

That's the motivation in the Joanna's comment
about we need new hardware helping us... but...

Where do we wanna go?

• StMichael must be a SW independent of other
set of programs that try to defend the system

• We will put another layer of protection between
the system’s auditors/protectors/verifiers and
the hardware

• Are the researchers wrong about the
impossibility of protecting the O.S. without a
hw-based solution?

How? SMM!

SMM – System Management Mode

The Intel System Management Mode (SMM) is typically
used to execute specific routines for power
management. After entering SMM, various parts of a
system can be shut down or disabled to minimize power
consumption. SMM operates independently of other
system software, and can be used for other purposes
too.

From the Intel386tm Product Overview – intel.com

How does it work?

• Chip is programmed to grab and recognize many type of events and
timeouts

• When this type of event happens, the chipset gets the SMI (System
Management Interrupt)

• In the next instruction set, the processor saves it owns state and enters
SMM

• When it receives the SMIACT, redirects all next memory cycles to a
protected area of memory (specially reserved for SMM)

• Received SMI and Asserted the SMIAct output? -> save internal state to
protected memory

• When contents of the processor state are fully in protected memory
area, the SMI handler begins to execute (processor is in real-mode with
4gb segments limit)

• SMM Code executed? Go back to the previous enviroment using the RSM
instruction

Going deeper

• Where will be our handler? In the memory, so someone can attack it?

• Protection of the memory pages (already supported by PaX)

• Possibility to add watchpoints in memory pages (detect read at VMAs?
At our code? Or writes against our system?)

• DR7 Register!
The Debug Register 7 (DR7) has few unducumented bits that completely modifies the
CPU behavior when entering SMM (earlier ICE – In-Circuit Emulation previous of
SMM)

3 1 1 1 1 1 1 0
1 5 4 3 2 1 0 0
+-----------------+-+-+-+-+-+-+--------+
| |T|T|G|I| | | |
| |2|R|D|R| | | |
+-----------------+-+-+-+-+-+-+--------+
 | | | |
 | | | +-- IceBp 1=INT01 causes emulator
 | | | to break emulation
 | | | 0=CPU handles INT01
 | | +---- General Detect = Yeah, we can spot CHANGES in the RegistersGeneral Detect = Yeah, we can spot CHANGES in the Registers
 | +------ Trace1 1=Generate special address
 | cycles after code dis-
 | continuities. On Pentium,
 | these cycles are called
 | Branch Trace Messages.
 +-------- Trace2 1=Unknown.

Compability Problems

•Yeah, we have SMM just in the Intel
platform... but:

– Many platforms already supports something
like firmware interrupts

– Although any platform have some way to
instrument it to debug agains hardware
problems

Another Difficulties

•Do you ever know kdump/kexec?

• It's a kernel dump and recovering utility
and is really interesting for debugging
purposes and to keep the system
availibility

•The problem:
– We have another kernel image

– An attacker who could execute some code in
kernel mode can just change this kernel image
(this resides in an unprotected memory area)
and then, get the system to cause a crash

– We can solve this in two ways:

• Signature analysis before run the new kernel

• Memory protection in the 'guest' kernel

Future? Who wanna test?

• We are looking for a secure OS that wants to try our proposal

• Theo De Raadt is seeing this:

But we want to propose to test our
ideas under a “secure” operating
system such as OpenBSD. :-)

Acknowledges

Spender for help into many portions of the model

PaX Team for solving doubts about PaX and giving many
help point directly to the pax implementation code

HackInTheBox crew – We'll surely steel some ideas for
the H2HC

REFERENCES

Spender public exploit:
http://seclists.org/dailydave/2007/q1/0227.html

Pax Project:
http://pax.grsecurity.net

Joanna Rutkowska:
http://www.invisiblethings.org

Julio Auto @ H2HC – Hackers 2 Hackers Conference:
http://www.h2hc.org.br

Phalanx:
http://packetstormsecurity.org/UNIX/penetration/rootkits/phalanx-b6.tar.bz2

Kernel UDP Client/Server:
http://www.kernelnewbies.org/Simple_UDP_Server

Chapter 11 (Scheduling Tasks):
http://lkmpg.cvs.sourceforge.net/lkmpg/2.4/

http://seclists.org/dailydave/2007/q1/0227.html
http://pax.grsecurity.net/
http://www.invisiblethings.org/
http://www.h2hc.org.br/
http://packetstormsecurity.org/UNIX/penetration/rootkits/phalanx-b6.tar.bz2
http://www.kernelnewbies.org/Simple_UDP_Server
http://lkmpg.cvs.sourceforge.net/lkmpg/2.4/

Thanks!

Questions?

Rodrigo Rubira Branco
<rodrigo@kernelhacking.com>

Domingo Montanaro
<conferences@montanaro.org>

Thank you :D

